카이스트, 실시간 나노 측정이 가능한 3D 표면예측 기술 개발​

반도체 및 첨단센서 산업 발전에 기여 전망

 

[더테크 뉴스] 카이스트 기계공학과 이정철 교수 연구팀이 현미경 사진을 이용해 나노 스케일 3D 표면을 예측하는 딥러닝 기반 방법론을 제시했다고 17일 밝혔다. 

 

물리적 접촉 기반으로 나노 스케일의 표면 형상을 3D 측정하는 원자현미경은 웨이퍼 소자 검사 등 반도체 산업에서 사용되고 있다. 하지만 원자현미경은 물리적으로 표면을 스캔하기 때문에 측정 속도가 느리고, 고온 극한 환경에서는 작동할 수 없다는 단점을 지닌다.

 

이에 연구팀은 비접촉 측정 방법인 광 현미경에서 딥러닝을 이용해 원자현미경으로 얻어질 수 있는 나노 스케일 3D 표면을 예측했다. 비슷한 개념인 사진에서 깊이를 예측하는 기술은 자율주행을 위해 많이 연구되고 있는 분야다. 

 

연구팀은 이러한 기술이 적용되는 스케일을 일상생활 범위에서 나노 스케일 범위로 옮겨 인공지능 모델을 훈련했다. 인공지능 모델로는 입력 데이터에서 대상의 특징을 추출하고, 추출된 특징에서 출력 데이터를 표현하는 인코더-디코더 구조를 활용했다. 연구팀이 제안한 모델은 광 현미경 사진을 하나의 변수로 표현하고, 이후 이 변수에서 현미경 사진을 3D 표면으로 계산해 나타내는데 성공했다.

 

 

연구팀은 제안된 방법론을 반도체 산업의 센서, 태양 전지 및 나노 입자 제작에 응용되는 저메니움(게르마늄) 자가조립 구조의 공정 중 분석 및 검사를 위해 적용했다. 광 현미경 사진을 이용해 15% 오차 수준 이내에서 1.72배까지 더 높은 해상도의 높이 맵을 예측했는데, 이를 기반으로 각 응용에 필요한 형상의 자가조립 구조가 만들어지도록 실시간으로 공정 과정을 검사했다. 또한 같은 딥러닝 모델로 어닐링(가열) 중 동적으로 변하는 표면 형상을 시뮬레이션 해 공정 과정을 분석 및 최적화해 기존 공정으로는 불가능했던 공동의 형상을 만들어냈다.

 

이번 연구에서 제안된 딥러닝 기반 방법론은 원자현미경으로는 제한돼있던 나노 스케일 표면 높이 맵 측정을 1㎟까지의 넓은 표면에 대해 기존 원자현미경 측정 속도 대비 10배에 해당하는 200 FPS까지 측정 가능하도록 속도를 높였으며, 광학을 이용한 비접촉 관측이기에 극한의 열 환경에서도 측정이 가능한 방법을 제시한 데에 의의가 있다. 

 

이번 연구는 광학 현미경 해상도의 물리적 한계인 빛의 파장 이하의 작은 나노 스케일에서 동적인 현상을 현미경만으로 분석할 수 있게 해, 공정 중 혹은 이후 표면 분석이 필요한 재료, 물리, 화학 등에서의 나노 스케일 연구를 촉진할 것으로 기대된다. 

 

또한 학계뿐 아니라 산업계에서도 쓰일 것으로 기대된다. 향후 반도체 사업에는 웨이퍼의 표면 분석 속도와 정확도를 개선함으로서 반도체 공정 시 생산 속도와 정밀한 측정으로 수율 개선에 기여할 수 있다.

 

연구를 주도한 이정철 교수는 “개발된 기술은 시간에 따라 변화하는 반도체 표면 및 내부 구조에 대해 불연속적인 저해상도 광학 현미경 사진 몇 장만 이용해 연속적인 고해상도 원자현미경 동영상을 생성해내는 최초의 연구로서, 극한 공정 중 실시간 나노 측정을 대체하는 효과를 가져와 반도체 및 첨단센서 산업 발전에 기여할 것ˮ이라고 말했다. 

 

한편, 이번 연구는 국제 학술지 ‘어드밴스드 인텔리전트 시스템(Advanced Intelligent Systems)’에 2022년 12월 20일 자에 온라인 게재됐으며, 2023년 1사분기의 표지 논문(Inside back cover) 중 하나로 선정됐다. 

 

이번 연구는 한국연구재단의 중견연구자지원사업과 기초연구실 지원사업의 지원을 받아 수행됐다.
 



배너

배너